
WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web∗

Tomas Vitvar
Digital Enterprise Research Institute

National University of Ireland
Galway, Ireland

tomas.vitvar@deri.org

Jacek Kopecký
Digital Enterprise Research Institute

University of Innsbruck
Innsbruck, Austria

jacek.kopecky@deri.at

Maciej Zaremba
Digital Enterprise Research Institute

National University of Ireland
Galway, Ireland

maciej.zaremba@deri.org

Dieter Fensel
Digital Enterprise Research Institute

University of Innsbruck
Innsbruck, Austria

dieter.fensel@deri.at

Abstract

The current Web service technology brought a new poten-

tial to the Web of services. However, the success of Web

services still depends on resolving three fundamental chal-

lenges, namely search, integration and mediation. In this

paper we define an extended Web service stack enabling to-

tal or partial automation of web service provisioning pro-

cess. With the goal of a maximal Web standards compli-

ance, we describe various types of service semantics, use

RDF Schema (RDFS) to define a pragmatic meaning for

those descriptions, and use Semantic Annotations for WSDL

and XML Schema (SAWSDL) to define a place for a seman-

tic description in a Web service. We elaborate on the ex-

isting SAWSDL specifications and define precise rules for

semantic annotations of Web services.

1 Introduction

In order to enable automation of services on the Web, var-
ious initiatives (e.g. WSMO [14] or OWL-S [16]) aim
at defining semantic service models and architectures with
goal to provide automated services’ tasks while describ-
ing services semantically. In this direction, the initiative
of the Semantic Annotations for WSDL and XML Schema
(SAWSDL)[11]1 is the first step towards standardization of
Semantic Web Services at W3C. SAWSDL defines attribute

∗This work is supported by the Science Foundation Ireland Grant No.
SFI/02/CE1/I131, and the EU projects Knowledge Web (FP6-507482),
SUPER (FP6-026850), and SemanticGov (FP6-027517).

1http://www.w3c.org/ws/sawsdl

extensions allowing for the semantic annotations of WSDL
elements while neither prescribing ontology language nor
the form of semantic service descriptions. One of the first
use of SAWSDL was to define grounding mechanisms for
WSMO or OWL-S (e.g. [12], [10]). Although such works
are important from the point view of respecting standards,
it basically does not provide any new value to semantic ser-
vice descriptions. Existing specifications already have the
grounding mechanism which works. The more valuable
gain of SAWSDL lies in opportunities to annotate exist-
ing WSDL descriptions in a bottom-up fashion while at the
same time only use descriptions of services which are rele-
vant to specific domain requirements.

With this respect and with input of WSMO, we define
an extended Web service specification stack, adding seman-
tic layers which offer richer descriptions for Web services.
With the goal of a maximal Web standards compliance, we
describe various types of service semantics, then we use
RDF Schema (RDFS)2 to define a pragmatic realization
for those descriptions, and finally we use SAWSDL to de-
fine a place for the semantic descriptions of a Web service.
In this paper we use the Web Service Modeling Language
(WSML) [3] as a certain style to express the semantic de-
scriptions and also the language for capturing logical ex-
pressions. It is important to note that our goal is not to
define yet another Web syntax for logics but to show how
existing logic languages can be used to describe service se-
mantics while at the same time preserving maximal com-
pliance with Web standards. WSML is a language that can
be used for that purpose. We want to allow the domain ex-
perts to define various types of service descriptions com-

2http://www.w3.org/TR/rdf-schema/



Schema Interface Operations Binding Service

Information Functional Behavioral Non-functional

modelReferences SchemaMappings

Domain Ontology
Capability/

Categorization
Choreography Policy

Messaging, Communication, ...

Non-semantic

Descriptions

Invocation

Semantic

Descriptions

Service Semantics

RDFS, OWL, RIF, 

WSML, ...

Service Ontology

RDFS

SAWSDL

WSDL

XML/XML Schema

SOAP, HTTP, ...

Figure 1. Extended Web Service Specification Stack

pliant with RDFS and to choose the types and expressivity
for those descriptions according to specific domain require-
ments.

Figure 1 depicts the extended Web service specification
stack, showing the standard specifications, Web languages
and semantic extensions. In Section 2 we describe the un-
derlying Web languages used for the non-semantic and se-
mantic descriptions in the stack, as well as the underlying
Web service standards. In Section 3 we define the various
types of semantic descriptions and the service ontology for
those descriptions. In Section 4 we specify how these se-
mantic descriptions are linked with the non-semantic de-
scriptions. In Section 5 we talk about related work and in
Section 6 we conclude the paper and describe our future
plans.

2 Underlying Specifications

2.1 Semantic Web Languages

The W3C has produced several language recommendations
for representation and exchange of knowledge on the Se-
mantic Web. At the core, the Resource Description Frame-
work (RDF)3 represents information in graph-based models
with so called triples, i.e. statements in the form 〈subject,
predicate, object〉. The subjects and objects link the triples
into a graph. RDF provides various syntaxes including RD-
F/XML4 and Notation 3 (N3)5. RDF Schema (RDFS) de-
fines constructs on top of RDF that allow the specification
of lightweight ontologies: RDFS allows to define classes,
properties as well as class and property hierarchies. Form-
ing additional layers of expressivity on the top of RDF(S),
the Web Ontology Language (OWL) [7] provides further
vocabulary along with a formalism based on Description

3http://www.w3.org/RDF/
4http://www.w3.org/TR/rdf-syntax-grammar/
5http://www.w3.org/DesignIssues/Notation3.html

Logics. Last but not least, an ongoing effort aims to ex-
tend the existing languages with rules. In particular, the
W3C Rule Interchange Format Working Group (RIF WG)6

aims to produce a core rule language for the Semantic Web
together with extensions that allow rules to be translated be-
tween different rule languages.

There are also several languages outside the W3C. For
instance, WSML is a family of ontology languages com-
patible in many ways with the W3C recommendations and
their underlying principles. WSML defines several vari-
ants covering the two major directions of knowledge repre-
sentation paradigms, namely Description Logics (WSML-
DL variant) and Logic Programming (WSML-Flight and
WSML-Rule variant). Some WSML variants (e.g. WSML-
DL) have direct mapping to OWL. In addition, WSML-Rule
is the basis of the Web Rule Language (WRL)7 specification
which serves as an input for the RIF WG. Thus, RIF can be
expected to be compatible with WSML-Rule to a large ex-
tent. The detailed description of WSML and its compliance
with standards can be found in [2].

2.2 Web Services

The Web Service Description Language (WSDL)8 provides
a standard description format for Web services, using XML
as a common flexible data exchange format, and applying
XML Schema for data typing. WSDL describes a Web ser-
vice in three levels: 1) an XML-based reusable abstract

interface, and the concrete details regarding 2) how and
3) where this interface can be accessed. The interface de-
fines a set of operations, each representing a simple ex-
change of messages that follows a specific message ex-
change pattern (MEP). Messages in operations reference
XML Schema element declarations to describe their con-
tents. In order to communicate with a Web service de-

6http://www.w3.org/2005/rules/
7http://www.w3.org/Submission/2005/08/
8http://w3.org/TR/wsdl20



scribed by an abstract interface, a client must know how
the XML messages are serialized on the network and where
exactly they should be sent. In WSDL, on-the-wire message
serialization is described in a binding, which generally fol-
lows the structure of an interface and specifies the necessary
serialization details. Finally, the service construct in WSDL
represents a single physical Web service that implements a
single interface. The Web service can be accessible at mul-
tiple endpoints, each potentially with a different binding.

While the WSDL specifies what the messages look like

rather then what the messages or operations mean, the spec-
ification called Semantic Annotations for WSDL and XML
Schema (SAWSDL) defines a simple extension layer over
WSDL that allows the semantics to be specified on various
WSDL components. SAWSDL defines extension attributes
that can be applied to elements both in WSDL and in XML
Schema in order to annotate WSDL interfaces, operations
and their input and output messages.

3 Semantics for Web Services

The major goal of adding semantics to web services is to
increase automation of certain tasks which need to be per-
formed with services before or during the invocation. Based
on various efforts in Semantic Web Services and Service-
Oriented Computing communities (e.g., [1, 5, 13, 15, 16,
19]), there are generally accepted types of semantic descrip-
tions of information, functional, non-functional, and behav-

ioral aspects of services, as well as general tasks of dis-

covery, negotiation, selection, composition, mediation and
invocation. The tasks are performed by a semantic client,
i.e. a service requester or a middleware system both per-
forming various combinations of tasks according to the re-
quirements of a particular application. In this paper we use
the term semantic client (or client) with no further defini-
tion (see e.g. [19] for more information about an intelligent
middleware system for the Semantic Web Services).
In this section we define the above mentioned types of ser-
vice descriptions and use RDFS to model them as part of
a service ontology. In particular, we define modeling ele-
ments based on RDFS for each type of the service descrip-
tion. We will show examples in Notation 3 and use the
namespaces and their prefixes as shown in Listing 1.

� �
1 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix dc: <http://purl.org/dc/elements/1.1/> .
4 @prefix xs: <http://www.w3.org/2001/XMLSchema#> .
5

6 @prefix wl: <http://www.wsmo.org/wsmo−lite#> .
7 @prefix ex: <http://example.org/onto#> .
8 @prefix wsml: <http://www.wsmo.org/wsml−rdf−syntax#> .

� �

Listing 1. Namespace declarations

3.1 Information Semantics

Information semantics is the formal definition of some do-
main knowledge used by the service in its input and output

messages. We describe the information semantics as an on-
tology

Ω = (C, R, E, I) (1)

with a set of classes (unary predicates) C, a set of relations9

(binary and higher-arity predicates) R, a set of explicit in-
stances of C and R called E (extensional definition), and a
set of axioms called I (intensional definition) that describe
how new instances are inferred.

We use basic RDFS terms to express ontology, but other
ontology languages (e.g. OWL, WSML) can also be used.
In fact, for some of the semantics detailed further in this
paper we require a language that can express logical con-
ditions. Table 1 shows the representation of information
semantics in RDF and RDFS. Note that symbols such as
c, r1 etc. on the left-hand side are translated into URIs c
and r1 etc. on the right-hand side using a bijective naming
function N : symbol → uri . For instance instead of r1
we could write N(r1), but we chose the former for read-
ability. Our information semantics definition allows predi-
cates with arity higher than two. RDFS only defines classes
(unary predicates) and properties (binary predicates). For
the higher-arity predicates, it is a common style to represent
an n-ary predicate as a class, with attributes (properties with
pre-set domain) representing the n parameters.

In Listing 2 we show a simple domain ontology in RDFS
that describes the semantics of information needed for a
telecommunication service. The NetworkConnection (line
3) stands for the class of all network connections which can
be put in a hierarchy by means of rdfs:subClassOf predicate
(lines 15). Classes can have properties, such as Bundle has
a property hasConnection that points to the network con-
nection which is part of the bundle.

3.2 Functional Semantics

Functional semantics describes service functionality, i.e.
what a service can offer to its clients when it is invoked.
We distinguish two types of service functionality: (1) ca-

pability — the functionality defined using conditions which
must hold before and after service invocation, and (2) cate-

gorization – the functionality defined using some classifica-
tion schema10 such as the United Nations Standard Products

9Note that the minimal definition would combine the sets of classes
and relations as a set of predicates, but we choose to split them, due to
familiarity and also reuse in further definitions.

10In [6], Hepp develops the ontologized versions of some classifications.



Information semantics construct RDFS triples
c ∈ C c rdf:type rdfs:Class
c ∈ C ∧ c(e) ∈ E e rdf:type c
r ∈ R
r is a binary predicate

r rdf:type rdf:Property

r ∈ R ∧ r(a, b) ∈ E a r b
r ∈ R
r is an n-ary predicate with
parameters r1 . . . rn

r rdf:type rdfs:Class
r1 rdf:type rdf:Property

...
rn rdf:type rdf:Property

r ∈ R ∧ r(a1, . . . , an) ∈ E _:x rdf:type r
_:x r1 a1

...
_:x rn an

(∀a, ∀b : r(a, b) ⇒ c(a)) ∈ I r rdfs:domain c
(∀a, ∀b : r(a, b) ⇒ c(b)) ∈ I r rdfs:range c
(∀a : c1(a) ⇒ c2(a)) ∈ I c1 rdfs:subClassOf c2
(∀a, ∀b : r1(a, b) ⇒ r2(a, b)) ∈ I r1 rdfs:subPropertyOf r2

Other axioms are expressed in some rule language

Table 1. Information semantics in RDFS

� �
1 ...
2 ex:Bundle rdf:type rdfs:Class .
3 ex:NetworkConnection rdf:type rdfs:Class .
4 ex:Service rdf:type rdfs:Class .
5 ex:hasService rdf:type rdf:Property ;
6 rdfs:domain ex:Bundle ;
7 rdfs:range ex:Service .
8 ex:hasConnection rdf:type rdf:Property ;
9 rdfs:domain ex:Bundle ;

10 rdfs:range ex:NetworkConnection .
11 ex:providesBandwidth rdf:type rdf:Property ;
12 rdfs:domain ex:NetworkConnection ;
13 rdfs:range xs:integer .
14 ex:DSLConnection rdf:type rdfs:Class ;
15 rdfs:subClassOf ex:NetworkConnection .
16 ...

� �

Listing 2. Example ontology

and Services Code (UNSPSC)11. While a classification can
be described as an ontology according to Equation 1, a ca-
pability is defined here as

F = (Σ, φpre , φeff ), (2)

where Σ ⊆ ({x} ∪ C ∪ R ∪ E) is is the signature of sym-
bols, i.e. variable names {x} or identifiers of elements from
C, R, E of some information semantics Ω; φpre is a precon-
dition which must hold in a state before the service can be
invoked and φeff is the effect, a condition which must hold
in a state after the successful invocation. Preconditions and
effects are defined as statements in logic L(Σ).

11http://www.unspsc.org/

Below, in Definition 1, we specify a restriction relation-
ship (partial ordering ≤) between capabilities that share the
symbol signature Σ and the information semantics Ω. Prac-
tically, if a capability F1 is a restriction of another capability
F2, any discovery algorithm that discovers F1 as a suitable
capability for some goal would also discover F2 as such.

Definition 1 (capability restriction) A capability F1 =
(Σ, φpre

1 , φeff
1 ) is a restriction of F2 = (Σ, φpre

2 , φeff
2 )

(written as F1 ≤ F2) if the precondition φpre
1 only holds

in states (denoted as s) where also φpre
2 holds, and if the

same is true for the effects:

F1 ≤ F2 ⇐⇒ ∀s : (holds(φpre
1 , s) ⇒ holds(φpre

2 , s)) ∧
(holds(φeff

1 , s) ⇒ holds(φeff
2 , s)) (3)

In Listing 3 the service ontology defines the class Capability

with predicates hasPrecondition and hasEffect. The range
of both these predicates is Axiom, meaning an arbitrary logi-
cal expression. The logical expression can be written in the
syntax of any logical language, for instance WSML-Rule
or RIF. Please note that we do not prescribe any constructs
for functional semantics defined as a classification ontology,
see Section 3.1 for discussion on expressing ontologies.

In Listing 4 we show how precondition and effect are de-
scribed using WSML-Rule for the Video on Demand sub-
scription service whose information semantics is shown in
Listing 2. The precondition specifies that the customer must
have a minimal required bandwidth and the effect identifies
a valid bundle having both the connection and the service
defined when the subscription is completed successfully.



� �
1 ...
2 wl:Capability rdf:type rdfs:Class .
3 wl:hasPrecondition rdf:type rdf:Property .
4 rdfs:domain wl:Capability ;
5 rdfs:range wl:Axiom .
6 wl:hasEffect rdf:type rdf:Property ;
7 rdfs:domain wl:Capability ;
8 rdfs:range wl:Axiom .
9 wl:Axiom rdf:type rdfs:Class .

10 ...
� �

Listing 3. Service Ontology: Functional
Semantics Constructs

We use the wsml:AxiomLiteral datatype to capture rules in
the WSML syntax, thus a client can correctly process the
axioms according to the WSML-Rule specification.

� �
1 ...
2 ex:VideoOnDemanSubscription rdf:type wl:Capability ;
3 wl:hasPrecondition ”
4 ?customer[hasConnection hasValue ?connection]
5 memberOf Customer and
6 ?service[requiresBandwidth hasValue ?x]
7 memberOf Service and
8 ?connection[providesBandwidth hasValue ?y]
9 memberOf NetworkConnection and

10 ?y > ?x
11 ”ˆˆwsml:AxiomLiteral .
12 wl:hasEffect ”
13 ?bundle[hasService hasValue ?service and
14 hasConnection hasValue ?connection]
15 memberOf Bundle
16 ”ˆˆwsml:AxiomLiteral .
17 ...
18 wsml:AxiomLiteral rdf:type rdfs:Class
19 rdfs:subClassOf wl:Axiom
20 ...

� �

Listing 4. Capability Example

3.3 Behavioral Semantics

In general, behavioral semantics is the formal description
which defines a service’s external (public) and internal (pri-
vate) behavior. The external behavior describes a protocol
that can be used by the client to consume the service func-
tionality. The internal behavior describes a workflow, i.e.
how the functionality of the service is aggregated out of
other services. However, internal behavior and its semantic
description is outside the scope of this work; an interested
reader can refer e.g. to the project SUPER12.

For the purposes of our work, we call the public behav-
ior of a service its choreography. The choreography is a
description of a protocol from the service point of view, i.e.
all the messages that are sent in to the service from the net-
work and all the messages that are sent from the service out

12http://www.ip-super.org

to the network13. We define the choreography X (read: chi)
of the service using a state machine as

X = (Σ, L), (4)

where Σ ⊆ ({x} ∪ C ∪ R ∪ E) is the signature of sym-
bols, i.e. variable names {x} or identifiers of elements from
C, R, E of some information semantics Ω; and L is a set
of rules. Further, we distinguish dynamic symbols denoted
as ΣI (input), and ΣO (output) and static symbols denoted
as ΣS . While the static symbols cannot be changed by the
service invocation, the dynamic symbols correspond to in-
put and output data of the service which can be changed
by the invocation. Each rule r ∈ L defines a state tran-
sition r : rcond → reff where cond is defined as an ex-
pression in logic L(ΣI ∪ ΣS) which must hold in a state
before the transition is executed; eff is defined as an ex-
pression in logic L(ΣI ∪ΣO ∪ΣS) describing how the state
changes when the transition is executed. ΣI and ΣO cor-
respond to the input and output data which is sent to the
service and received back. Both input and output data is
“linked” with input and output messages of an underlying
Web service operation using the annotation mechanism de-
scribed in Section 4. When the transition is executed, the
input data is sent as a message to the underlying operation
which then responds with a message containing the output
data.

In Definition 2, we define a consistency between a chore-
ography and a capability that share the symbol signature Σ
and the information semantics Ω.

Definition 2 (capability and choreography consistency)
Let X = (Σ, L) be a choreography, F = (Σ, φpre , φeff ) be
a capability, and τ = (s1, s2, ..., sn) be some sequence of
states where for each si ∈ τ, i = 1, ..., n − 1 exists ri ∈ L
such that rcond

i holds in si and reff
i changes the state to

the state si+1. Then, X and F are consistent (denoted as
X ∼ F ) iff φpre holds in s1 and φeff holds in sn.

In Listing 5 the service ontology defines constructs for the
choreography description where the Choreography class
holds hasInput, hasOutput and hasRule properties. The
hasInput and hasOutput refer to classes from information
semantics and define input and output symbols for the be-
havioral description. The hasRule defines a transition rule
with range defined as rdfs:Class leaving a particular form of
transition rules on the application and a concrete language
used.

Listing 6 shows the choreography description for the ser-
vice in the example in Listing 4. In here, we use the WSML-

13Please note that our notion of choreography is different from the one
used in the Web Service Choreography Description Language (WS-CDL)
(http://www.w3.org/TR/ws-cdl-10/)



� �
1 ...
2 wl:Choreography rdf:type rdfs:Class .
3 wl:hasInput rdf:Type rdfs:Property ;
4 rdfs:domain wl:Choreography ;
5 rdfs:range rdfs:Class .
6 wl:hasOutput rdf:Type rdfs:Property ;
7 rdfs:domain wl:Choreography ;
8 rdfs:range rdfs:Class .
9 wl:hasRule rdf:Type rdfs:Property ;

10 rdfs:domain wl:Choreography ;
11 rdfs:range wl:Rule .
12 wl:Rule rdf:Type rdfs:Class .
13 ...

� �

Listing 5. Service Ontology: Choreography
Constructs

Rule language to describe a rule (lines 6-9) allowing a re-
quester to quote for a price of the network service (the quote
response can be sent out from the service if the quote re-
quest has been previously received). In order to execute
the state transition, the rule’s condition (lines 6,7) defines
what must be true in a state and the rule’s effect (line 9) de-
fines how the state changes while at the same time the data
of ServiceQuoteResponse is expected to be sent out from
a corresponding service’s operation. Similarly as in List-
ing 4 we use the wsml:RuleLiteral datatype to capture rules
expressed in the WSML syntax.

� �
1 ...
2 ex:PriceQuoteChoreography rdf:type wl:Choreography ;
3 wl:hasInput ex:ServiceQuoteRequest ;
4 wl:hasOutput ex:ServiceQuoteResponse ;
5 wl:hasRule ‘‘
6 if (?quoteRequest)
7 ?quoteRequest memberOf ServiceQuoteRequest
8 then
9 # memberOf ServiceQuoteResponse

10 ’’ˆˆwsml:RuleLiteral .
11 ...
12 wsml:RuleLiteral rdf:type rdfs:Class ;
13 rdfs:subClassOf wl:Rule .
14 ...

� �

Listing 6. Choreography Example

3.4 Non-Functional Semantics

Generally, non-functional properties are incidental details
specific to the implementation or running environment. Pol-
icy languages (e.g. WS-Policy14) are often used to express
various service constraints that fall within non-functional
semantics of the service. In addition, there are works that
focus on semantic representation of policies, e.g. [8, 9, 17,
18]. While some of these works are based on the WS-Policy
framework (esp. [9]), others offer their own models.

14http://w3.org/TR/ws-policy

Our service ontology does not prescribe any constructs
to model non-functional semantics of the service and thus
can be used with any of the proposed approaches. We allow
a user to model non-functional semantics using any ontol-
ogy language with RDF syntax, similarly as for the informa-
tion semantics in Section 3.1. For instance, Listing 7 shows
a simple non-functional property describing the price of a
Video on Demand bundle change.

� �
1 ex:VideoOnDemandPrice rdf:type ex:PriceSpecification ;
2 ex:pricePerChange ”30”ˆˆex:euroAmount ;
3 ex:installationPrice ”49”ˆˆex:euroAmount .

� �

Listing 7. Non-functional Property Example

4 Semantic Annotations for Web Services

In this section, we define how various types of semantic
descriptions described in Section 3 can be applied to var-
ious WSDL components using SAWSDL attribute exten-
sions. We define rules for consistency and completeness
of the semantic descriptions and annotations of the WSDL
components with these descriptions. For this purpose we
use following notation for WSDL, SAWSDL and types of
semantic descriptions:

• WSDL: Schema S and {x}S as a set of all element
declarations and type definitions of schema S; inter-

face I and {o}I as a set of all operations of interface I ,
each operation o ∈ {o}I may have one input message
element m ∈ {x}S and one output message element
n ∈ {x}S ; service, binding, endpoint;

• SAWSDL: modelReference, ref (x, α) where x is a
non-semantic description (any of the WSDL compo-
nents) pointing to a semantic description α; lower-

ingSchemaMapping, lower(y, f(β)) where y is an el-
ement or type from schema S, and f(β) = y is a trans-
formation function transforming some semantic de-
scription β to y; liftingSchemaMapping, lift(z, g(z))
where z is an element or type from S and g(z) = γ is
a transformation function transforming z to some se-
mantic description γ;

• Semantic Descriptions: Information Ω (defined in
Eq. 1 with C(Ω) as set of all classes), Functional (Ca-
pability) F (defined in Eq. 2), Behavioral (Choreogra-
phy) X (defined in Eq. 4).

Please note that the SAWSDL specification only defines the
use of annotations on the schema and the interface, but other
uses are intentionally not precluded. In addition, SAWSDL



does not specify the type of semantics used for annota-
tions, nor does it specify any rules where such semantics
should be placed, leaving some flexibility for the applica-
tion. SAWSDL uses URIs for all semantic references, ex-
pecting that the application either knows the referenced con-
cept, or can find its definition. Table 2 shows the summary
of how we apply the semantic descriptions to the WSDL
components.

4.1 Information Semantics

Information semantics apply to the schema that WSDL uses
to describe messages, i.e. element declarations and type

definitions. Both can carry modelReferences that link them
to classes in the information semantics model Ω. At in-
vocation time, the client needs to exchange data with the
service, so the data needs to be transformed between the se-
mantic model and the service-specific XML structure. For
this, SAWSDL provides liftingSchemaMapping and lower-

ingSchemaMapping annotations that link to the appropriate
transformations. This is illustrated in Listing 8.

� �
1 ...
2 <xs:element name=”NetworkConnection” type=”

NetworkConnectionType”
3 sawsdl:modelReference=”http://example.org/onto#

NetworkConnection”
4 sawsdl:loweringSchemaMapping=”http://example.org/NetCn.xslt”/>
5 ...

� �

Listing 8. Schema linked to information
semantics

According to Rule 1, all element declarations that are
used as input messages must have consistent modelRefer-

ence and loweringSchemaMapping annotations, and all el-
ement declarations that are used in output messages must
have consistent modelReference and liftingSchemaMapping

annotations. These mappings must exist for the client to un-
derstand and generate the messages in XML from ontology
instances and vice-versa.

Rule 1 (completeness) Let S be a schema, {o}I be the set
of operations of an interface I and Ω be a definition of infor-
mation semantics. For each m ∈ {x}S where m is an input

message element of any operation in {o}I , there exists a
class c1 ∈ C(Ω) such that ref (m, c1) and lower(m, f(c1))
with f(c1) = m are defined. Analogically, for each n ∈
{x}S where n is an output message element of any oper-
ation in {o}I , there exists a class c2 ∈ C(Ω) such that
ref (n, c2) and lift(n, g(n)) with g(n) = c2 are defined.

� �
1 ...
2 <wsdl:interface name=”NetworkSubscription”
3 sawsdl:modelReference=”http://example.org/onto#

NetworkSubscriptionCapability” >
4 ...
5 </wsdl:interface>
6 ...

� �

Listing 9. WSDL interface linked to its
capability

4.2 Functional Semantics

Functional semantics apply to the Web service, represented
concretely by the service construct, and abstractly by the
reusable interface construct. A SAWSDL modelReference

is used to point from a service or an interface to its appropri-
ate functional description, as shown in Listing 9. A WSDL
interface may be shared by multiple services, therefore the
functional description of the interface should be general,
since it effectively applies to all services that implement
that interface. A concrete functional description attached to
the service then refines the functional description of the in-
terface. Additionally, aggregate interfaces or services (i.e.,
those that combine multiple potentially independent func-
tionalities) may be annotated with multiple functional de-
scriptions.

According to Rule 2 each functionality of a service must
be a restriction of some functionality of the service’s inter-
face (see Definition 1). This is in particular useful to allow
discovery to first find appropriate interfaces and then only
deal with services that implement these interfaces. Rule 3
is analogical to Rule 2 with the difference that it applies to
interface extension15 when it is ensured that functionality
cannot be lost through WSDL interface extension.

Rule 2 (consistency) Let F , G (F �= G) be some func-
tional descriptions, E be the service and I be the inter-
face such that E implements I . Then, if ref (E,F ) and
ref (I, G) are defined, then it must hold that F ≤ G.

Rule 3 (consistency) Let F , G (F �= G) be some func-
tional descriptions, I and J be some interfaces such that I
extends J . Then, if ref (I, F ) and ref (J, G) are defined,
then it must hold that G ≤ F .

Apart from describing the service (or the interface) as a
whole, it is also possible to ascribe functional descriptions
to the operations, again using modelReference pointers. De-
scribing the functional semantics with operation capabilities

15Interface extension is a feature of WSDL 2.0.



WSDL component Semantics type Description
Schema Information Ontology pointers, mappings
Interface Functional General, reusable capability or category
Interface Operation Functional Concrete operation capability or category
Service Functional Concrete service capability or category
Interface Behavioral General, reusable choreography
Service Behavioral Concrete service choreography
Schema Behavioral Pointers to input and output concepts

in choreography signature
Service and Endpoint Non-functional Non-functional properties and policies
Binding
(and sub-components)

Non-functional For instance, operation-specific
non-functional properties

Table 2. Semantic annotations for WSDL components

is especially useful for Web services whose interface is sim-
ply a collection of standalone operations. For instance, a
network subscription service may offer independent opera-
tions for subscription to a bundle, cancellation of a subscrip-
tion, or price inquiry. A client will generally only want to
use one or two of the operations, not all three. This shows
that service discovery can, in such cases, become opera-
tion discovery. In this case, discovery and composition ap-
proaches may be used to select and order the invocations of
the operations, and then the interface may not have a chore-
ography description.

According to Rule 4, if an operation within an interface
is not annotated with a capability, the interface must be an-
notated with a choreography that uses the operation. This
rule ensures that no operation is left invisible to the seman-
tic clients.

Rule 4 (completeness) Let o ∈ {o}I be the interface op-
eration. If for any F , the ref (o, F ) is not defined where
F is the functional description, then ref (I, X) must be de-
fined with o ∈ X where X is the choreography description
(cf. Section 4.3).

Please note that all the definitions above apply to both types
of functional semantics defined in Section 3.2, i.e. capabil-
ity defined on an abstract state space and categorization us-
ing some classification schema. It is even possible to com-
bine both types of functional semantics for a service, inter-
face and its operations. While the SAWSDL modelRefer-

ence URI values do not indicate whether the annotations go
to capabilities or categories (or any other type of semantics,
for that matter), the semantic model will make it clear.

4.3 Behavioral Semantics

Similarly to functional semantics, behavioral semantics
(choreography) apply to the Web service, i.e. either to a
WSDL service or to an interface. In this context, the pur-
pose of a choreography is to define the order in which the

client should invoke the operations of the Web service. List-
ing 10 shows the interface from Listing 9 with the addi-
tional choreography annotation; a modelReference can con-
tain any number of semantic concept URIs and it is up to the
client to interpret them and to make use of them as appro-
priate. In fact, both services and interfaces can be annotated
with multiple alternative choreographies.

� �
1 ...
2 <wsdl:interface name=”NetworkSubscription”
3 sawsdl:modelReference=”http://example.org/onto#

NetworkSubscriptionCapability
4 http://example.org/onto#

NetworkSubscriptionBehavior” >
5 ...
6 </wsdl:interface>
7 ...

� �

Listing 10. WSDL interface linked to its
capability and choreography

According to Rule 5 each choreography of an interface
(or a service) must be consistent (see Definition 2) with
some capability of that interface (or that service).

Rule 5 (consistency) Let Z be an interface or a service and
{Xi} be all choreographies such that ref (Z, Xi) is defined.
Then, for each Xi some capability F must exist for which
ref (Z, F ) is defined and Xi ∼ F .

A reference to the choreography is complemented by infor-
mation semantics annotations in the XML Schema, because
the input and output symbols from the choreography signa-
ture need to be linked with the actual XML messages that
will carry the data. Information semantics annotations are
described in Section 4.1. In addition, according to Rule 6,
for each input or output symbol used by the choreography
of an interface (or service), there must be an element decla-
ration used appropriately as an input or output message by



an operation of the interface (or the interface implemented
by the service) that has a modelReference to the input or
output symbol.

Rule 6 (completeness) Let X be the choreography with
Σin and Σout denoting the sets of input and output sym-
bols of X , and let Z be an interface or a service such that
ref (Z, X) is defined. Further, let I be Z if Z is an inter-
face, or the interface that Z implements, if Z is a service;
then {o}I is the set of operations of I . For every concept
α which is identified by an identifier from Σin, exists m as
an input message in {o}I with defined ref (m, α). Analogi-
cally, for every concept β which is identified by an identifier
from Σout, exists n as an output message in {o}I with de-
fined ref (n, β).

4.4 Non-Functional Semantics

Non-functional semantics may be attached to the service as
a whole, as shown in Listing 11, or to particular endpoints
(for instance to indicate different security or price combina-
tions offered by the different endpoints). Non-functional
semantics are always specific to a concrete service, an-
notating interfaces with non-functional properties should
be avoided. In case non-functional properties need to be
specified on the operations (for example, different opera-
tions may have different invocation micropayment prices),
a WSDL binding or any of its sub-components may be used
to capture these properties. With SAWSDL, non-functional
properties are attached using modelReference from any of
the WSDL components into the non-functional semantics
model. Some of the works on semantic models for non-
functional properties are based on the WS-Policy frame-
work. This framework contains an attachment specifica-
tion, WS-PolicyAttachment16, that defines mechanisms for
associating policies with policy subjects. In WSDL, any
component can be viewed as a policy subject. Using WS-
PolicyAttachment for capturing the non-functional proper-
ties would be an alternative to using SAWSDL modelRefer-

ence.

5 Related Work

OWL-S (Semantic Markup for Web Services [16]) was
the first major ontology for semantic description of Web
services. It is a set of three interlinked ontologies: Ser-
vice Profile captures the functional and non-functional se-
mantics; Service Model details the behavioral semantics —
it models the service choreography as a (composite) pro-
cess with inputs and outputs and a rich variety of interme-
diate steps; and Service Grounding ties the process ontol-

16http://w3.org/TR/ws-policy-attach

� �
1 ...
2 <wsdl:service name=”ExampleCommLtd”
3 interface=”NetworkSubscription”
4 sawsdl:modelReference=”http://example.org/onto#

VideoOnDemandPrice”>
5 <wsdl:endpoint name=”public”
6 binding=”SOAPBinding”
7 address=”http://example.org/comm.ltd/subscription” />
8 </wsdl:service>
9 ...

� �

Listing 11. WSDL service linked to its non-
functional property

ogy with actual physical Web services. Information seman-
tics is captured using the Web Ontology Language OWL.
Web Service Modeling Ontology WSMO [15] is a top-
down conceptual model for semantic description of Web
services which is realized in Web Service Modeling Lan-
guage (WSML, [3]). It has four top-level components: on-
tologies capture information semantics; goals describe what
the user (or the system) wants to achieve; Web services
model the properties of the available services; and medi-
ators resolve any heterogeneities that might arise in a dis-
tributed system. The WSMO describes a Web service along
with the similar service semantics as we define in Section 3,
however, these semantics are specified in the Meta Object
Facility (MOF)17. In addition, the WSMO adopts the top-
down approach to modeling of Web services when service
semantics is not meant to be used separately but as a whole.
Web Service Semantics (WSDL-S, [1]) was created in the
METEOR-S18 project as a specification of how WSDL can
be annotated with semantic information. WSDL-S itself
does not provide a concrete model for semantic description
of Web services, instead it makes the assumption that the
concrete model will be expressible as annotations in WSDL
and XML Schema documents. Parts of WSDL-S were taken
as the basis for SAWSDL, which is discussed in the previ-
ous sections. Above those parts, WSDL-S also supported
explicit constructs for categorizing WSDL interfaces, and
for attaching preconditions and effects to interface opera-
tions. However, all this functionality can be achieved using
the appropriate semantic models and the SAWSDL model
reference. Finally, the WSDL RDF mapping19 represents
the information from WSDL documents in RDF, in a simple
OWL-based WSDL ontology. Also the SAWSDL annota-
tions have their RDF representation. It is due to the exis-
tence of these RDF mappings that our lightweight semantic
service ontology does not, in fact, need a class Service —

17http://www.omg.org/technology/documents/
formal/mof.htm

18http://lsdis.cs.uga.edu/projects/meteor-s/
19http://w3.org/TR/wsdl20-rdf/



the underlying model for Web services is taken from the
WSDL ontology.

6 Conclusion and Future Work

In this paper we have proposed an open approach to defi-
nition of service semantics with goal of the maximal com-
pliance with Web standards. We have defined an extended
specifications for Web service stack, i.e. semantic layer on
the top of standard Web service specifications allowing to
use and integrate not yet standardized rule languages for
the Semantic Web. Building on the SAWSDL specifications
we have defined the concrete semantic annotations for Web
Services using the service descriptions including the set of
rules ensuring completeness and consistency of annotations.
In addition, our work takes into account that when annotat-
ing Web services with semantics, the domain expert might
only want to use some of the semantic descriptions serv-
ing particular domain requirements of Web services’ tasks
and their automation. Using our approach it is possible to
choose parts of service semantics, use them consistently for
annotations of Web services and promote this way the au-
tomation of selected tasks in the service provisioning pro-
cess.

In our future work we want to elaborate on the annotation
of functional and behavioral descriptions for Web service
interface. In particular we want to show how the behav-
ioral semantics can be derived from annotations of interface
operations. This would allow us to limit the semantic an-
notations to information and functional while other seman-
tic descriptions could be derived automatically. On the top
we plan to elaborate on the completeness and consistency
rules to enable automatic validation of annotations. Also,
we plan to define other types of grounding to other Web
service technology such as REST [4] and to use semantic
annotations of services for enhancing mash-ups, i.e. inte-
gration of different resources available through some API
on the Web.

References

[1] R. Akkiraju, J. Farrell, J.Miller, M. Nagara-
jan, M. M. Schmidt, A. Sheth, and K. Verma.
Web Service Semantics - WSDL-S, available at
http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/. Tech-
nical report, LSDIS Lab, 2005.

[2] J. de Bruijn, D. Fensel, and H. Lausen. D34v0.1: The
Web Compliance of WSML. Technical report, DERI,
2007. Available from: http://www.wsmo.org/TR/
d34/v0.1/.

[3] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web
service modeling language wsml: An overview. In Proceed-

ings of the 3rd European Semantic Web Conference (ESWC

2006), volume 4011 of Lecture Notes in Computer Science,

LNCS. Springer, 6 2006.
[4] R. T. Fielding. Architectural Styles and the Design of

Network-based Software Architectures. PhD thesis, Univer-
sity of California, Irvine, 2000.

[5] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and
M. Zaremba. Wsmx: A semantic service oriented middle-
ware for b2b integration. In ICSOC, pages 477–483, 2006.

[6] M. Hepp. Products and services ontologies: A methodol-
ogy for deriving owl ontologies from industrial categoriza-
tion standards. International Journal on Semantic Web and

Information Systems (IJSWIS), 2(1):72–79, 2006.
[7] I. Horrocks. Owl: A description logic based ontology lan-

guage. In CP, pages 5–8, 2005.
[8] L. Kagal, T. Berners-Lee, D. Connolly, and D. J. Weitzner.

Using Semantic Web Technologies for Policy Management
on the Web. In 21st National Conference on Artificial Intel-

ligence (AAAI), 2006.
[9] V. Kolovski, B. Parsia, Y. Katz, and J. A. Hendler. Repre-

senting Web Service Policies in OWL-DL. In International

Semantic Web Conference, pages 461–475, 2005.
[10] J. Kopecký, M. Moran, T. Vitvar, D. Roman, and A. Mo-

can. D24.2 WSMO Grounding. Technical report, DERI,
2007. Available from: http://www.wsmo.org/TR/
d24/d24.2/v0.1.

[11] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. Sawsdl:
Semantic annotations for wsdl and xml schema. IEEE Inter-

net Computing, 11(6), 2007.
[12] M. Paolucci, M. Wagner, and D. Martin.
[13] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Semantic

Web Services: Meteor-S Web Service Annotation Frame-
work. In 13th International Conference on World Wide Web,
pages 553–562, 2004.

[14] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web Service Modeling Ontology. Applied On-

tologies, 1(1):77 – 106, 2005.
[15] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,

M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web Service Modeling Ontology. Applied Ontol-

ogy, 1(1):77–106, 2005.
[16] The OWL Services Coalition. OWL-S 1.1 Release. Avail-

able at http://www.daml.org/services/owl-s/1.1/, November
2004.

[17] A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate,
J. Dalton, and S. Aitken. Policy and Contract Management
for Semantic Web Services. In AAAI Spring Symposium on

Semantic Web Services, 2004.
[18] K. Verma, R. Akkiraju, and R. Goodwin. Semantic Match-

ing of Web Service Policies. In SDWP Workshop, 2005.
[19] T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba,

M. Zaremba, M. Moran, E. Cimpian, T. Haselwanter, and
D. Fensel. Semantically-enabled service oriented architec-
ture : concepts, technology and application. Service Ori-

ented Computing and Applications, 2(2):129–154, 2007.


