
hRESTS: an HTML Microformat for Describing RESTful Web Services

Jacek Kopecký
STI Innsbruck

Innsbruck, Austria
jacek.kopecky@sti2.at

Karthik Gomadam
kno.e.sis Center

Wright State University
Dayton, Ohio, USA

karthik@knoesis.org

Tomas Vitvar
STI Innsbruck

Innsbruck, Austria
tomas.vitvar@sti2.at

Abstract

The Web 2.0 wave brings, among other aspects, the Pro-
grammable Web: increasing numbers of Web sites provide
machine-oriented APIs and Web services. However, most
APIs are only described with text in HTML documents. The
lack of machine-readable API descriptions affects the fea-
sibility of tool support for developers who use these ser-
vices. We propose a microformat called hRESTS (HTML
for RESTful Services) for machine-readable descriptions of
Web APIs, backed by a simple service model. The hRESTS
microformat describes main aspects of services, such as op-
erations, inputs and outputs. We also present two extensions
of hRESTS: SA-REST, which captures the facets of public
APIs important for mashup developers, and MicroWSMO,
which provides support for semantic automation.

1. Introduction

The Web has gone through a great change since it be-
came popular, evolving from an infrastructure for static con-
tent of pages consumed by individuals to a communication
platform where individuals, companies, and devices alike
provide, consume and synthesize content and services on a
massive scale. The value of Web applications is no longer
only in providing content to consumers but also in exposing
functionality through increasing numbers of public APIs
designed for machine consumption. Both Web applications
and APIs follow the Web architecture style called REST
(Representational State Transfer [1]), and public APIs on
the Web are often called “RESTful Web services”.

Web application APIs are generally described using
plain, unstructured HTML documentation useful only to
a human developer. Finding suitable services, composing
them (“mashing them up”), mediating between different
data formats etc. are currently completely manual tasks. In
order to provide tool support or even a degree of automa-
tion, we need the API descriptions to be machine-readable.

hRESTS microformat − machine−readable information

− advanced tool support

HTML (text, link, forms) − existing service descriptions

MicroWSMOSA−REST

Figure 1. hRESTS layer cake

An “adaptation of semantic XHTML that makes it eas-
ier to publish, index, and extract semi-structured informa-
tion”, called microformats [6], is an approach for annotating
mainly human-oriented Web pages so that key information
is machine-readable. On top of microformats, GRDDL [2]
is a mechanism for extracting RDF information from Web
pages, particularly suitable for processing microformats.

There are already microformats for contact information,
geographic coordinates, calendar events, ratings etc. In this
paper, we propose a microformat called hRESTS (HTML
for RESTful Services) for machine-readable descriptions of
Web APIs, backed by a simple service model. As depicted
in Figure 1, the hRESTS microformat captures machine-
processable service descriptions, building on the HTML
service documentation aimed at developers. We also show
that hRESTS is a good basis (and a common model) for ex-
tensions, such as SA-REST, providing support for describ-
ing various facets of Web APIs, or MicroWSMO, adding
means for semantic Web service automation.

The remainder of this paper is structured as follows:
Section 2 introduces an example service/API that we use
for demonstrating hRESTS. In Section 3, we discuss the
common ways of describing RESTful Web services. Sec-
tion 4 details our service model — how we view RESTful
Web services. Section 5 uses this model to define hRESTS,
our microformat for machine-readable service descriptions.
Sections 6 and 7 sketch SA-REST and MicroWSMO, two
possible applications of hRESTS that use it and extend it for
various kinds of semantic annotations. In Section 8, we dis-
cuss some related work, and Section 9 concludes the paper.

Hotel booking service
hotel

information
results
search

my bookings
confirmation

payment
processing

service
description

Figure 2. Structure of an example service

2. Example RESTful Web Service

Web APIs and RESTful Web services are hypermedia
applications consisting of interlinked resources, oriented to-
wards machine consumption. The orientation towards ma-
chine consumption manifests mainly in that the interac-
tions between RESTful services and their clients are gen-
erally done with structured data (e.g. XML, JSON1), as
opposed to the standard Web document markup language,
HTML, which is a human-oriented presentation language.
In their structure and behavior, RESTful Web services are
very much like common Web sites. [10]

Figure 2 illustrates an example RESTful hotel booking
service, with its resources and the links among them. The
“service description” is a resource with a stable address and
information about the other resources that make up the ser-
vice. It serves as the initial entry point for client interaction.

The service description resource contains a form for
searching for available hotels, given the number of guests,
the start and end dates and the location. The search form
serves as a link to search results resources, one per every
unique combination of the input data — the form prescribes
how to create a URI that contains the input data; the URI
then identifies a resource with the search results. As there
is a large number of possible search queries, there is also
a large number of results resources, and the client does not
need to know that all these resources are likely handled by
a single program on the server.

The search results are modeled as separate resources (as
opposed to, for instance, a single data-handling resource
that takes the inputs in an input message), because it simpli-
fies the reuse of the hotel search functionality in other ser-
vices or in mashups (lightweight compositions of Web ap-
plications), and it also enables caching of the results. With
individual search results resources, creating the appropriate
URI and retrieving the results (with HTTP GET) is easier
in most programming frameworks than POSTing the input
data in a structured data format to one Web resource, which
would then reply with the search results.

1JavaScript Object Notation, see http://www.json.org/

The service description also contains a link to a page
with the bookings of the current user (which requires au-
thentication functionality). With such a resource available
to them, client applications no longer need to store the in-
formation about performed bookings locally.

Search results are a list of concrete rates available at the
hotels in the given location, for the given dates and the num-
ber of guests. Each item of the list contains a link to further
information about the hotel (e.g. the precise location, star
rating and other descriptions), and a form for booking the
rate, which takes as input the payment details (e.g. credit
card information) and an identification of the guest who is
going to stay in the room. The booking data is submitted
(POSTed) to a payment resource, which processes the book-
ing and redirects the client to a confirmation resource. The
content of the confirmation can serve as a receipt.

Finally, the “my bookings” resource links to the confir-
mations of the bookings done by the authenticated user. The
confirmations may further provide a way of canceling the
reservation (not shown in the picture).

Together, all these resources form the hotel booking
service. However, the involved Web technologies actually
work on the level of resources, so service is a virtual term
here and the figure shows the service in a dashed box.

So far, our description of the example hotel reservation
service has focused on the hypermedia aspect: we described
the resources and how they link to each other. Alternatively,
and in fact more commonly, we can also view the service as
a set of operations available to the clients — as an API.

In Figure 3, we extract the operations available in our
service. The search form in the homepage represents a
search operation, the hotel information pages linked from
the search results can be viewed as an operation for re-
trieving hotel details, the reservation form for any particular
available rate becomes a reservation operation, and so on.

While the resources of a service (the nouns) form the hy-
permedia graph (shown in Fig. 2), a programmer making a

search(date, city)
list of rates (and hotels)

reserve(rate, creditCard, guestInfo)
confirmation ID

getHotelDetails(hotel)
detailed info about hotel

listMyBookings()
list of confirmation IDs

getConfirmationDetails(confirmationID)
confirmation details

Hotel booking service
hotel

information
results
search

confirmation
my bookings

payment
processing

description
service

Figure 3. Operations of the example service

mashup or an automated client program rather thinks of the
operations that can be invoked (the verbs, shown in Fig. 3);
therefore public RESTful Web services are generally called
APIs and are described in terms of the operations. The fol-
lowing might be a typical operation description:

The operation getHotelDetails is invoked using the
method GET at http://example.com/h/{id}, with
the ID of the particular hotel replacing the parameter id.
It returns the hotel details in an ex:hotelInformation
document.

3. Describing Web APIs and RESTful Web
Services

Web APIs, or indeed services of any kind, need to be
described in some way, so that potential clients can know
how to interact with them. While Web applications are self-
describing to their human users, Web services are designed
for machine consumption, and someone has to tell the ma-
chine how to use any particular service.

WSDL [13] is a standard for Web service description,
yet it is not perceived as suitable for describing RESTful
services, and few (if any) such services have a WSDL de-
scription. Instead, Web APIs are usually described in textual
documentation (on dedicated Web pages). Nevertheless, in
order to provide tool support or automation for consuming
RESTful Web services, certain aspects of the service de-
scriptions must be made machine-readable.

In this section, we briefly discuss how Web services are
described using HTML text, links and forms.

3.1. Textual Descriptions

Web service documentation is most naturally available
as Web pages. Textual documentation, such as the exam-
ple operation description above, or real service descrip-
tions at docs.amazonwebservices.com/AmazonSimpleDB/

2007-11-07/DeveloperGuide and flickr.com/services/

api, has all the details necessary for a human to be able
to create a program that can use the service.

The operation description from above could be captured
in HTML textual documentation like this:

<p>The operation <code>getHotelDetails</code> is
invoked using the method GET at <code>http://exam-
ple.com/h/{id}</code>, with the ID of the particu-
lar hotel replacing the parameter <code>id</code>.
It returns the hotel details in an <code>ex:hotelInfor-
mation</code> document.</p>

In order to tease out the technical details (operations, ad-
dresses, HTTP methods, input and output data formats), the
textual documentation needs to be amended in some way,
such as with our hRESTS microformat (Section 5).

3.2. Links and Forms

Beside the typical public Web API descriptions, the Web
actually contains many simple machine-readable operation
descriptions: hyperlinks and data input forms.

Theoretically, any hyperlink denotes an operation that
uses the method GET on the given target address. Such oper-
ations have no input data, and they generally serve for data
retrieval. Our example hotel reservation service has one data
retrieval operation with no inputs: listMyBookings(). The de-
scription of this service can simply link to the “my book-
ings” resource and specify the format in which the list of
bookings will be returned. The user can then very easily
test this operation — simply click on the link.

However, obviously not all hyperlinks in the service
documentation describe service operations. Therefore, a
machine-readable service description should distinguish
links representing data retrieval operations from other, non-
operation links.

Operations on the Web can also be described with forms.
A form specifies the address, the HTTP method (HTML
forms support only GET and POST) and the input data. If
a service has an operation that has a few simple inputs and
uses the GET or POST method, such as the getHotelDetails
operation above, the service description can include a form
for invoking this operation, again so that a developer read-
ing the description can easily test the operation.

Our service description microformat hRESTS, while
primarily aimed at annotating textual descriptions, also
supports annotation of hyperlinks and forms. If present,
operation-describing links and forms provide most of the
necessary machine-readable information about the opera-
tion (with the notable exception of the output data format),
and hRESTS takes advantage of that.

4. Model for RESTful Web Services

The interaction of a client with a RESTful service such
as the one in our example is a series of operations where
the client sends a request to a resource (using one of the
HTTP methods GET, POST, PUT or DELETE), and receives
a response that may link to further useful resources.

The graph nature of a hypermedia service guides the se-
quence of operation invocations, but the meaning of a re-
source is independent of where it is linked from; the same
link or form, wherever it is placed, will always lead to the
same action. Therefore, a RESTful Web service can be de-
composed into its operations, which can be considered in-
dependently from the structure of the hypertext (cf. Fig. 3).

This leads us to a service model shown in Figure 4.
A Web service has a number of operations, each with po-
tential inputs and outputs, and a hypertext graph structure

.

. Hypertext

.

Operation 1
address, method

Web service

address, method

Operation 2
address, method

input

output

input

output

input

output
Operation n

Figure 4. Functional model of a Web service

where the outputs of one operation may link to other op-
erations. This model presents the requirements for what
our machine-readable description of RESTful Web services
must be able to represent. Unsurprisingly, the model is very
similar to the structure of WSDL, only instead of hypertext,
WSDL services use the terms “process” or “choreography”
for the sequencing of operations.

An operation description specifies an address (a URI or a
parametrized URI template), the HTTP method (GET, POST,
PUT or DELETE), and the input and output data formats.
In principle, the output data format can be self-describing
(self-description is a major part of Web architecture), but
the API description should say what the client can expect.

Listing 1 shows an RDFS realization of our service
model, together with the operation properties described
above. Services, their operations, and messages can also
have human-readable names, which can be attached using
the rdfs:label property.

A machine-readable description of a Web service can
be further annotated with additional information, such as
semantic descriptions (the functionality of operations, the
meaning of the input and output data), or nonfunctional
properties (e.g., the price of using the service, QoS guaran-
tees, security and privacy policies). Such annotations extend
the utility of service descriptions. We sketch different kinds
of annotations in Sections 6 and 7.

5. hRESTS: Machine-readable Web API and
Service Descriptions

The purpose of the hRESTS microformat is to provide
a machine-readable representation of common Web service
and API descriptions. Section 4 shows our model for this
machine-readable information. But first, let us quickly de-
scribe how microformats work.

Microformats take advantage of existing XHTML facil-
ities such as the class and rel attributes to mark the frag-
ments of interest in a Web page. A calendar microformat
marks events with their start and end time and with the event
title, and a calendaring application can then directly import
data from what otherwise looks like a normal Web page.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
4
5 hr:Service a rdfs:Class .
6 hr:hasOperation a rdf:Property ;
7 rdfs:domain hr:Service ;
8 rdfs:range hr:Operation .
9 hr:Operation a rdfs:Class .

10 hr:hasInputMessage a rdf:Property ;
11 rdfs:domain hr:Operation ;
12 rdfs:range hr:Message .
13 hr:hasOutputMessage a rdf:Property ;
14 rdfs:domain hr:Operation ;
15 rdfs:range hr:Message .
16 hr:Message a rdfs:Class .
17 hr:hasAddress a rdf:Property ;
18 rdfs:domain hr:Operation ;
19 rdfs:range hr:URITemplate . # a datatype for URI templates
20 hr:hasMethod a rdf:Property ;
21 rdfs:domain hr:Operation ;
22 rdfs:range hr:HTTPMethod .
23 hr:HTTPMethod a rdfs:Class .
24 hr:GET a hr:HTTPMethod .
25 hr:POST a hr:HTTPMethod .
26 hr:PUT a hr:HTTPMethod .
27 hr:DELETE a hr:HTTPMethod .

Listing 1. Service model in RDFS/N3

A microformat translates the hierarchy of HTML ele-
ments into a hierarchy of objects and their properties. For
instance in hRESTS, an element with the class service is
expected to contain (child or descendant) elements with the
class operation, representing the service’s operations, and
one element with the class label, specifying the name of
the service. Further details on how microformats work can
be found at microformats.org.

Listing 2 contains the sample HTML service description
shown earlier, extended with a sentence about the service,
and annotated with the hRESTS microformat. The follow-
ing subsection defines the classes of the hRESTS microfor-
mat, together with a few defaulting rules. Section 5.2 then
discusses our XSLT implementation of a parser for the mi-
croformat, together with tools planned as future work.

1 <div class=”service” id=”svc”>
2 <p>Description of the
3 ACME Hotels service:</p>
4 <div class=”operation” id=”op1”><p>
5 The operation <code class=”label”>getHotelDetails</code> is
6 invoked using the method GET
7 at <code class=”address”>http://example.com/h/{id}</code>,
8 with the ID of the particular hotel replacing
9 the parameter <code>id</code>.

10 It returns the hotel details in an
11 <code>ex:hotelInformation</code> document.
12 </p></div></div>

Listing 2. Example hRESTS description

5.1. hRESTS Microformat Definition

The service class on block markup (e.g. <body>,
<div>), as shown in the example listing on line 1, indicates
that the element is a part of the hRESTS microformat, con-
taining a Web service or API description. A service contains
one or more operations and may have a label (see below).

The operation class can also be used on block
markup (e.g. <div>) to indicate that the element contains
a description of a Web service operation, as shown in the
listing on line 4. An operation description specifies the ad-
dress and the method used by the operation, and it may also
contain description of the input and output of the operation,
and finally a label.

The operation class can also be used on hyperlinks (<a
href>) and on forms (<form>). A hyperlink operation spec-
ifies the address in the href attribute and the method is GET.
A form operation specifies the address in the action at-
tribute, the method in the method attribute, and the various
input fields of the form specify the input of the operation.

The address class is used either on textual markup
(e.g. , shown on line 7) or on a link (<a href>) and
specifies the URI (or the URI template in case any inputs are
URI parameters) of the operation. On a textual element, the
address is in the content; on a link, the target is the address.

The method class on textual markup (e.g. ,
shown on line 6) specifies the HTTP method used by the
operation.

The input and output classes are used on block
markup (e.g. <div> but also), as shown on lines 8
and 10, to indicate the description of the input or output of
an operation. Apart from the potential label, hRESTS does
not actually provide for further machine-readable informa-
tion about the inputs and outputs; however, extensions such
as SA-REST and MicroWSMO add more properties here.

Finally, the label class is used on textual markup to
specify a human-readable label for a service, an operation
or for a message, as shown on lines 3 and 5.

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
2 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
3 @prefix jk: <http://members.sti2.at/˜jacekk/hrests/src.xhtml#> .
4
5 jk:svc a hr:Service;
6 rdfs:isDefinedBy <http://members.sti2.at/˜jacekk/hrests/src.xhtml>;
7 rdfs:label ”ACME Hotels”;
8 hr:hasOperation jk:op1 .
9 jk:op1 a hr:Operation;

10 rdfs:label ”getHotelDetails”;
11 hr:hasMethod hr:GET;
12 hr:hasAddress ”http://example.com/h/{id}”ˆˆhr:URITemplate;
13 hr:hasInputMessage [a hr:Message];
14 hr:hasOutputMessage [a hr:Message] .

Listing 3. RDF data extracted from Listing 2

Defaulting: when a Web page contains some operation
descriptions but no element with class service, the parser
should assume that the page describes a single service with
no label. Further, a service may specify the default address
and method for its operations, using the classes address
and method outside an operation block.

Due to space constraints, further details on the hRESTS
microformat will be avialable online at http://esw.w3.org/
topic/Semantic_Annotations_for_RESTful_Services

5.2. Implementation

In accordance with GRDDL, we have implemented an
XSLT stylesheet that extracts the RDF form of the hRESTS
data from XHTML Web pages.2 The hRESTS description
from Listing 2 is embedded in an XHTML document3 that
references this stylesheet. The GRDDL RDF view of the
document is shown in Listing 3.

Beside the parser that extracts the data from hRESTS-
annotated Web pages, we could also implement a validator
to check that a Web page adheres to the hierarchy of our
service model, and that it includes all the necessary infor-
mation: a service must have at least one operation to be use-
ful, and an operation must specify an address and the HTTP
method in order to be invokable.

We could also implement a Web crawler to look for
hRESTS service descriptions and store them in a service
registry. We plan to work on these tools as part of the
follow-up work on SA-REST and MicroWSMO.

6. SA-REST: Support for Service Facets

In addition to operations with their inputs and outputs,
API documents describe other facets including data formats
and programming language bindings. Unlike the WSDL
model, where XML is the only data format, RESTful ser-
vices also use a variety of other data formats including
JSON, GData and ATOM/RSS, as described in any partic-
ular API documentation. Additionally, APIs may also pro-
vide client libraries in various programming languages. SA-
REST, originally proposed in [11] as an RDFa-based anno-
tation mechanism, is an extension of hRESTS that supports
the description of these different service properties.

The motivation for creating this extension stemmed out
of our experience in creating the IBM sharable mashup
framework [8] and a search engine for Web APIs [3]. We
identified two key impediments that users often face in the
process of creating mashups.

1. The task of integrating services that support different
data formats, since mediating between data formats is
not straightforward.

2http://members.sti2.at/˜jacekk/hrests/hrests.xslt
3http://members.sti2.at/˜jacekk/hrests/src.xhtml

2. Creating mashups of services with client libraries in
different languages would mean that the developer ei-
ther has to use the supported languages or to write
the client in a neutral language. In both cases, the de-
veloper loses the advantage of having client libraries.
Further, it is very hard to access popular services like
Google maps without using their client libraries.

Developers prefer to use services that are homogeneous in
their data formats and client libraries, since it helps them to
avoid these impediments. The SA-REST extension defines
classes for describing the data format and programming lan-
guage binding properties of Web APIs, thereby allowing de-
velopers to search in homogeneous groups.

The data-format class is used on textual markup and
specifies the data format used in the API, or in a particular
operation input or output. In the example in Listing 4, the
data format markup is shown in line 4. In this case, the hotel
service uses JSON.

The p-lang-binding class on textual markup speci-
fies the programming language frameworks for which client
libraries are available. To indicate the availability of client
libraries in Java and PHP, the developer would use the
markup shown on lines 6 and 7.

1 <div class=”service” id=”svc”>
2 <p>The output format of the operations of the
3 <code class=”label”>ACME Hotels</code> service is
4 JSON.
5 Client libraries are available in
6 Java and
7 PHP.
8 </p></div>

Listing 4. SA-REST example

With SA-REST, which is only sketched here, it will be
possible to find and browse Web APIs based on various
facets important to mashup developers.

7. MicroWSMO: Towards SWS Automation

In this section, we briefly describe how hRESTS can be
used to support automation of the use of RESTful Web ser-
vices. Such automation has been researched under the name
Semantic Web Services (SWS), where the aim is to use se-
mantic technologies to help with the following tasks: dis-
covery matches known Web services against a user goal and
returns the services that can satisfy that goal; composition
puts together multiple services when no single service can
fulfill the whole goal; ranking orders the discovered or com-
posed services based on user requirements and preferences
so the best service can be selected; invocation then com-
municates with the service to execute its functionality; and
mediation resolves any arising heterogeneities.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix wsmolite: <http://www.wsmo.org/ns/wsmo−lite#> .
5 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
6
7 wsmolite:Ontology a rdfs:Class ; rdfs:subClassOf owl:Ontology .
8 wsmolite:ClassificationRoot rdfs:subClassOf rdfs:Class .
9 wsmolite:NonfunctionalParameter a rdfs:Class .

10 wsmolite:Condition a rdfs:Class .
11 wsmolite:Effect a rdfs:Class .
12
13 sawsdl:modelReference a rdf:Property .
14 sawsdl:liftingSchemaMapping a rdf:Property .
15 sawsdl:loweringSchemaMapping a rdf:Property .

Listing 5. WSMO-Lite and SAWSDL ontology

To support automation of these tasks, we need to cap-
ture four aspects of service semantics: information model
(a domain ontology) represents data, especially in input
and output messages; functional semantics specifies what
the service does, by means of functionality classification or
through preconditions and effects; behavioral semantics de-
fines the sequencing of operation invocations when invok-
ing the service; and nonfunctional descriptions represent
service policies or other details specific to the implemen-
tation or running environment of a service.

WSMO-Lite [12] proposes a lightweight ontology for
the four kinds of semantics, shown in Listing 5, and uses
SAWSDL (Semantic Annotations for WSDL and XML
Schema [7]) to annotate WSDL documents with instances
of that ontology. This makes WSDL-based Web services
amenable to SWS automation.

Because the hRESTS service model (Section 4) is so
similar to that of WSDL, we can adopt SAWSDL proper-
ties as an extension of hRESTS and use them to add se-
mantic descriptions conforming to the WSMO-Lite service
ontology. As also shown in Listing 5, SAWSDL defines
three properties: model reference is used to link any part of
a service description with its semantic properties, and lift-
ing and lowering schema mappings point from message de-
scriptions to transformations between the ontological data
and the on-the-wire message serialization.

Listing 6 shows MicroWSMO, our SAWSDL-based ex-

1 <div class=”service” id=”svc”>
2 <p>ACME Hotels is a
3 <abbr class=”mref” title=”.../ecommerce/hotelReservation”>
4 hotel reservation</abbr> service.</p> ...
5 <div class=”operation” id=”op1”><p> ...
6 A particular hotel ID replaces the param
7 <code class=”mref” title=”.../onto.owl#Hotel”>id</code>
8 (lowering).
9 </p></div></div>

Listing 6. MicroWSMO example

tension of hRESTS. Line 3 specifies that the service does
hotel reservations (this would be a category in some classi-
fication of services), line 7 defines the input of the operation
to be an instance of the class Hotel, and the lowering schema
mapping on line 8 would then map a given instance of Hotel
into the ID that the service expects as a parameter.

MicroWSMO is only sketched here; finalizing it is fu-
ture work. When completed, it will let RESTful Web ser-
vices be used seamlessly along with WSDL-based services
in WSMO-Lite based semantic automation frameworks.

8. Related Work

There are several alternatives to hRESTS for machine-
readable description of Web APIs, e.g. WADL [5] and even
WSDL 2.0. Probably due to their perceived complexity,
they do not seem to be gaining traction with API providers;
service descriptions remain mostly in unstructured text.
Therefore we propose hRESTS as a simpler approach.

There is also an alternative to using microformats for
machine-readable annotations of HTML pages: RDFa [9]
is a general-purpose approach for embedding RDF data in
HTML. While it could, in principle, be used for hRESTS,
RDFa markup tends to be more complex than microformat
markup. In addition to the simplicity, the humans-first ap-
proach of microformats also allows hRESTS to help users
comprehend APIs better.

In the area of WSDL-based Web services, the annotation
standard SAWSDL has given rise to a systematic approach
to data mediation, utilizing data schemas with semantic in-
formation. Web APIs can also enable easier data mediation,
for instance in context of service composition or mashups,
by using hRESTS and MicroWSMO to describe their mes-
sages. Additionally, [4] demonstrates that semantic annota-
tions of data schemas can also be used to estimate the level
of effort required for a user to perform mediation manually.

9. Conclusions

The programmable Web needs machine-readable de-
scriptions of the available Web services. With such descrip-
tions, search engines can gather better information about the
services, and developers can easier use it. Tools enabled by
the existence of such descriptions can support the developer
in using the Web APIs and mashing them up with others.

In this paper, we have defined a model of RESTful Web
services, and we used that model to create the hRESTS
microformat, which can be used to make the crucial parts
of existing Web API documentation machine-readable. We
have further outlined SA-REST and MicroWSMO, two ex-
tensions that build on top of hRESTS.

To foster wider adoption of hRESTS, we intend to follow
the microformats.org process and to build community

consensus on machine-readable descriptions of Web APIs.
The authors were a part of the SAWSDL standardization
process and hope to use their experience in working with the
community of providers and users of public Web APIs. Cur-
rently, the work on hRESTS is supported by the W3C SWS
Testbed incubator group, information regarding this can be
found at http://www.w3.org/2005/Incubator/swsc/.

References

[1] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis, Univer-
sity of California, Irvine, 2000. Chair: Richard N. Taylor.

[2] Gleaning Resource Descriptions from Dialects of Lan-
guages (GRDDL). Recommendation, W3C, September
2007. Available at http://www.w3.org/TR/grddl/.

[3] K. Gomadam, A. Ranabahu, M. Nagarajan, A. P. Sheth, and
K. Verma. A Faceted Classification Based Approach to
Search and Rank Web APIs. In ICWS, 2008. To appear.

[4] K. Gomadam, A. Ranabahu, L. Ramaswamy, K. Verma, and
A. P. Sheth. Mediatability: Estimating the Degree of Human
Involvement in XML Schema Mediation. In ICSC, 2008.

[5] M. J. Hadley. Web Application Description Language
(WADL). Technical report, Sun Microsystems, November
2006. Available at https://wadl.dev.java.net/.

[6] R. Khare and T. Çelik. Microformats: a pragmatic path to
the semantic web (Poster). Proceedings of the 15th interna-
tional conference on World Wide Web, pages 865–866, 2006.

[7] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL:
Semantic Annotations for WSDL and XML Schema. IEEE
Internet Computing, 11(6):60–67, 2007.

[8] M. Maximilen, A. Ranabahu, and K. Gomadam. IBM
Sharable Code: A Domain-Specific Language and Online
Platform for Web APIs and Services Mashups. IEEE In-
ternet Computing, to appear, 2008.

[9] RDFa in XHTML: Syntax and Processing. Candidate Rec-
ommendation, W3C, June 2008. Available at http://www.
w3.org/TR/rdfa-syntax/.

[10] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly
Media, May 2007.

[11] A. P. Sheth, K. Gomadam, and J. Lathem. SA-REST:
Semantically Interoperable and Easier-to-Use Services and
Mashups. IEEE Internet Computing, 11(6):91–94, 2007.

[12] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel. WSMO-
Lite Annotations for Web Services. In The Semantic Web:
Research and Applications, 5th European Semantic Web
Conference, ESWC 2008. Springer, 2008.

[13] Web Services Description Language (WSDL) Version 2.0.
Recommendation, W3C, June 2007. Available at http://
www.w3.org/TR/wsdl20/.

